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Abstract — Recent studies on bio-electromagnetic inverse 
problems have shown that a satisfactory understanding of 
source mechanisms requires to perform source connectivity 
analyses. This paper focuses on the comparison of inverse 
techniques for reconstructing the source connectivity network. 
The results confirm that the noise effect for linear estimation 
technique is direct, while, for spatial filtering technique the 
effect is indirect. Linear estimation is advantageous for the 
connectivity reconstruction of high quality MEG data, while, 
the benefit for the case of spatial filter is low SNR 
environments. This paper also proposes a method to improve 
the source connectivity reconstruction by using the correlation 
gram matrix. The results show that the proposed method can 
increase the reconstruction accuracy, decrease the error 
fluctuation and enhance the representation for profiles of the 
original source connectivity network. 

I. INTRODUCTION 

Magnetoencephalography (MEG) uses an array of 
sensors positioned over the whole head that are extremely 
sensitive to the minuscule changes in the magnetic fields 
produced by the electrical activity in the brain. The 
traditional studies of the MEG source reconstruction have 
been proposed to localize the activities and study such 
activity-specific changes in isolation, however, this isolated 
study is insufficient. A satisfactory understanding of the 
source mechanisms requires performance of relationship 
analyses between activities. Many methods for connectivity 
analyses have been proposed, e.g. synchrony, coherence, 
and Granger. Among these methods, synchrony and 
coherence are used to assess undirected connectivity. 
Granger, which can reveal information about direction and 
degree of connectivity, and is widely used by several 
groups. One power of MEG is that it can extract the time 
courses of the sensor level measurement with excellent 
temporal resolution. MEG is, therefore, a very promising 
tool to investigate the sensor level connectivity. However, 
MEG measurement is sensitive to the field spread effect, 
the connectivity analyses at the sensor level cannot generate 
straightforward interpretations at the source level. Another 
power of MEG is that it can localize activities with good 
spatial resolution. Therefore, MEG source connectivity 
network reconstruction is becoming main issues in the bio-
electromagnetic inverse computation researches recently. 
Although inverse techniques are constantly being improved 
and different methods have been comprehensively 
compared, most comparisons mainly focus on localization 
bias or spatial resolution instead of fully comparing unique 
source connectivity reconstruction characteristics. Thus, a 

complete and rigorous comparison of the performance of  
inverse techniques for MEG source connectivity network 
reconstruction is placing increasing demands [1]-[5].  

This paper evaluated inverse techniques, with respect to 
the effectiveness of the MEG source connectivity network 
reconstruction. By considering two factors, the effect to the 
connectivity strength and the violation by the measurement 
noise, a thorough comparison is performed. This paper also 
suggested a modified spatial filter with a proposed 
correlation gram matrix to improve the reconstruction result. 
Finally, through simulations, some guidelines were 
proposed for a consensus on using inverse techniques of the 
source connectivity network reconstruction.  

II. METHODS 

MEG source reconstruction is an inverse problem of the 
form Lsb  , where b is the MEG sensor measurement, s 
is the unknown source and L is the leadfield matrix. The 
inverse operator Wmn according to linear estimation is 
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Rmn is weighting matrix, C is noise covariance matrix, 2  
is regularization parameter and ŝ is reconstructed source. 
While from spatial filter, weight matrix Wsp is derived as 
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Rsp is the spatial covariant matrix of the measurement. 
The output of the ith sensor at time t is denoted as bt(i), 

the vector b(i) = [b1(i), b2(i), …, bT(i)] expresses the whole 
time courses (from 1 to T) of the ith sensor output, and b is 
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where I is the number of sensors. The weight matrix Wpa of 
the proposed approach is then obtained,   
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Rpa is the correlation gram matrix,   is the inner product, 

2
is the standard L2-norm. 

i,jR reveals the similarity 

degree between the ith and the jth sensor measurements.  
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III. SIMULATIONS AND RESULTS 

The system configuration for the simulations used 151 
axial gradiometers on CTF MEG machine. An overlapping 
spheres model was applied for the forward calculation of 
the magnetic fields. Gaussian white noise with SNR values 
(15, 10, 5, 3 dB) was added to MEG sensors to model and 
represent the range of instrumentation noise. Three 
extended patch sources were selected on the cortical 
surface, and three time series x(t), y(t) and z(t), according to 
the following autoregressive model were assigned as 
activity time series to the patches 1, 2 and 3, respectively.  
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The connectivity information of sources revealed by the 
Granger in network form, shown in Fig. 1, was considered 
as the underlying source connectivity. The arrow reveals 
the connectivity direction, source 3 caused 2, and 2 caused 
1. The width of each line represents the connectivity 
magnitude, which means the connectivity strength of source 
2 to 1, i.e. 0.4070 is stronger than that of 3 to 2, i.e. 0.1634. 

 
Fig. 1. The underlying source connectivity network. 

Three source time series were estimated using inverse 
techniques, then, the Granger was applied to the estimated 
source series. Table I shows the reconstructed connectivity 
network, where "i→j" represents the connectivity direction 
from the source i to j. As shown, the underlying 
connectivity network can be revealed by all three inverse 
techniques, however, the reconstructed connectivity 
magnitudes from the proposed approach are in closer 
agreement with the underlying truth than those from linear 
estimation or spatial filter.  

TABLE I 
THE RECONSTRUCTED CONNECTIVITY NETWORK 

SNR 
(dB) 

Direction 
Connectivity Magnitude 

Linear 
Estimation 

Spatial 
Filter 

Proposed 
Method 

15 
2→1 0.4041 0.3808 0.4015 
3→1 0 0 0 
3→2 0.1530 0.1527 0.1562 

10 
2→1 0.4102 0.3844 0.4053 
3→1 0 0 0 
3→2 0.1484 0.1529 0.1568 

5 
2→1 0.4186 0.4121 0.4088 
3→1 0 0 0 
3→2 0.1445 0.1428 0.1572 

3 
2→1 0.4222 0.4148 0.4087 
3→1 0 0 0 
3→2 0.1427 0.1420 0.1567 

In order to examine trends of the resultant connectivity 
as SNR decreases, The reconstruction error was defined as 
the L2 norm of the difference between the reconstructed 
and underlying connectivity. As shown in Table II, for the 

linear estimation, there is an increase in reconstruction error 
as SNR decreases. This reflects the direct pattern of  noise 
effect on the source connectivity network reconstruction of 
linear estimation. At high SNRs (15 and 10 dB) the results 
of linear estimation are better than those of spatial filter, 
while at low SNRs (5 and 3 dB) the linear estimation shows 
worse results than the spatial filter. For the spatial filter, the 
results at low SNRs are better than those at high SNRs, 
which shows a somewhat reversed pattern compared to 
linear estimation. We should point out that the noise cannot 
influence the source connectivity network reconstruction 
directly when using the spatial filter. The proposed 
approach has lower error than linear estimation and spatial 
filter for all SNRs, also, the error fluctuates within a narrow 
range. This leads to the fact that the proposed approach can 
contribute robust abilities to the connectivity reconstruction. 

TABLE II 
THE ERROR OF RECONSTRUCTED CONNECTIVITY NETWORK 

SNR 
(dB) 

L2-Norm Error (10-4) 
Linear Estimation Spatial Filter Proposed Method

15 1.17 8.01 0.82 
10 2.35 6.21 0.46 
5 4.92 4.50 0.42 
3 6.57 5.19 0.48 

IV. CONCLUSION 

This article described inverse techniques to reconstruct 
source connectivity network from MEG data, and compared 
the effectiveness of linear estimation, spatial filtering and 
proposed approach, on the metrics of the connectivity 
magnitude and error. We confirmed that the noise effect for 
linear estimation is direct, while the effect for spatial filter 
is indirect, moreover, linear estimation is advantageous for 
connectivity reconstruction of high quality MEG data, 
while, the benefit for the case of spatial filter is the low 
SNR environment. This article also proposed a inverse 
technique to improve the MEG source connectivity network 
reconstruction. The results indicated that the proposed 
approach prevents the inclusion of spurious connectivity, 
enhances the reconstruction accuracy, decreases the error 
fluctuation, therefore, represents profiles of the original 
source connectivity network precisely. 
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